Яндекс.Метрика
Главная › Рубрика › Математические модели

Генетическое программирование торговых стратегий

tree

Своим опытом в построении высокопроизводительных торговых систем с использованием генетического программирования делится Dr Jonathan Kinlay в своем блоге.

Увеличение времени, стоимости и риска разработки стратегий заставило трейдинговые компании исследовать возможности итенсификации процессов разработки. Одним из таких подходов является генетическое программирование.
(далее…)

Измерение информации на рынке с помощью PIN. Часть 3

PINdata

В этой, последней части цикла разберем пример вычисления PIN с применением языка R. Кроме библиотеки PIN языка R будем использовать также библиотеку highfrequency.

Для примера автор берет сгенерированные данные, которые соответствуют формату TAQ - стандарт для акций NYSE. Данные состоят из двух наборов - временной ряд ценового котирования (sample_qdata) и сделки (sample_tdata)  и предоставляются в открытом доступе вместе с библиотекой highfrequency.
(далее…)

Измерение информации на рынке с помощью PIN. Часть 2

PINparm

В прошлой части мы рассмотрели теоретическую модель, лежащую в основе вычисления вероятности присутствия на рынке информированных трейдеров PIN. Продолжим с эмпирической реализации этой модели.
(далее…)

Измерение информации на рынке с помощью PIN. Часть 1

zagaglia

В нескольких статьях мы рассмотрим использование индикатора PIN, который представляет собой вероятность присутствия на рынке так называемых информированных трейдеров. Статьи основаны на работе  Paolo Zagaglia "PIN: Measuring Asymmetric Information in Financial Markets with R". Так как вероятность информированной торговли зависит от сделок купли и продажи в течение рабочего дня, в данном цикле мы рассмотрим весь процесс, от обработки исходных данных и вычисления вероятности информированной торговли, до определения параметров лежащей в основе математической модели. Примеры будут сопровождаться кодом на языке R.
(далее…)

Модель скрытых состояний Маркова. Часть 4

hmmTrendFollow-OutOfSample-Corrected

В прошлой части мы продемонстрировали обучение модели Маркова на данных, полученных с помощью симуляции. В данной статье рассмотрим производительность модели на реальных данных. Будем тестировать трендследящую стратегию на индексе S&P500.
(далее…)

Модель скрытых состояний Маркова. Часть 3

hmmStateProbabilities

В этой части рассмотрим обучение модели скрытых состояний Маркова на языке R. В прошлых статьях мы изучили математическую основу модели, которая воплощена в библиотеке RHmm. Есть два способа распознавания режимов с помощью модели Маркова, первый - использование одной модели, каждое состояние которой отражает режим, в каком находится рынок. Второй способ подразумевает построение нескольких моделей, каждая из которых создана для одного режима, задача состоит в том, чтобы выбрать ту модель, которая генерирует данные, наиболее соответствующие текущему состоянию рынка. Рассмотрим оба эти способа.
(далее…)

Модель скрытых состояний Маркова. Часть 2

hmm-training-outline-1024x889

В предыдущей статье мы говорили об эффективных алгоритмах, необходимых для вычисления вероятностей и стат. распределений модели Маркова, которыми являются форвардный алгоритм и алгоритм Витерби. Форвардный алгоритм вычисляет вероятность данных полученных моделью по всем возможным последовательностям состояний. Алгоритм Витерби вычисляет вероятность данных полученных моделью по одной, наиболее вероятной, последовательности.
(далее…)

Модернизация стратегии robot_uralpro. Lead-lag relationship

108Трейдеры, которые приобрели мою программу robot_uralpro, спрашивают, можно ли доработать алгоритм для применения его на современном рынке? Напомню, стратегия робота основана на взаимоотношении цен синтетического индекса, составляемого динамически из рыночных цен акций, входящих в индекс РТС, и фьючерса RI. Идея "одноногого" статистического арбитража, реализованного в роботе, будет работать и сейчас, только в том случае, если научиться правильно определять, какой актив опережает другой в смысле динамики их цен. Эта статья посвящена правильному выявлению такого взаимодействия, которое в англоязычных источниках называется "lead-lag relationship" -опережение-отставание между разными активами.
(далее…)

Модель скрытых состояний Маркова. Часть 1

hidden-markov-model-1024x412

В данном цикле статей начинаем рассматривать модель Маркова, которая находит применение в задачах классификации состояния рынка и используется во многих биржевых роботах. Статьи основаны на постах, опубликованных в блоге Gekko Quant. Также будет рассмотрены практические алгоритмы на финансовых рынках. Код в цикле приведен на языке R.
(далее…)